RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. SECOND SEMESTER EXAMINATION, MAY 2012

Paper : II

Full Marks : 75

FIRST YEAR

COMPUTER SCIENCE (Honours)

Date	: 21/05/2012	
Time	: 11 am – 2 pm	

Answer any five :

1.	a) Explain geometrical significance of Regula Falsi Method and Newton Raphson Method.b) Use any one to find the positive value of sqrt (2).	[9] [6]
2.	 a) Round-off the following numbers correct up to 4 decimal places : i) 2.464352, ii) 45.876432, iii) 23.567653, iv) 1.00555 b) Find the polynomial and then compute f(2.5) using that polynomial from the given table, using appropriate interpolation formula. X : 0 1 3 4 	[2] ing
	 F(x) : 5 6 50 105 c) Compute y(0·2), from the equation dy/dx = x−y, by Runge-Kutta method, correct to five decir places, taking h = 0·1 and y(0) = 1. 	[5+1] nal [7]
3.	a) Write an algorithm to delete the root of a binary search tree.b) What is heap? Construct a heap for the following :	[5]
	40, 55, 20, 35, 10, 60, 45, 30c) Write an algorithm to insert an element into a sorted array.	[2+4] [4]
4.	a) Explain the insertion and deletion methods for Binary Search Tree.b) Write an algorithm to reverse a single linked list.	[3+8] [4]
5.	 a) Explain the concept of vector interrupt with a suitable example. b) What is bus contention problem? Explain how polling technique can be used to avoid this problem c) Explain how transceivers can be used for bidirectional bus control. d) Write an efficient algorithm to multiply two n-bit unsigned numbers (You should mention hardware needed to support your algorithm). 	[4] n.[1+3] [2] the [5]
6.	a) What do you mean by addressing modes?b) What is implicit addressing mode?c) Give proper example to illustrate Direct and indirect addressing modes for both register a memory.	[2] [2] and [8]
	d) Distinguish between horizontal vs. vertical microprogramming.	[3]
7.	 Write short notes on <u>any three</u>: a) Bus Arbitration b) DMA and interrupt. c) Hardwired and Microprogrammed control 	[3×5]

d) Hashing

e) Infix.Prefix and Postfix notations